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Abstract
The partition function of the q-state Potts model with random ferromagnetic
couplings in the large-q limit is generally dominated by the contribution of a
single diagram of the high temperature expansion. Computing this dominant
diagram amounts to minimizing a particular submodular function. We provide
a combinatorial optimization algorithm, the optimal cooperation algorithm,
which works in polynomial time for any lattice. The implementation of the
method and its running time are also discussed.

PACS numbers: 05.50.+q, 02.10.Ab, 02.60.Gf, 02.60.Pn

Introduction

Spin models with discrete symmetry are often used to describe order–disorder transitions,
such as in magnetic systems or in absorbed monolayers, etc; for a review, see [1]. In two-
dimensional regular lattices and with homogeneous couplings there are some models (Ising
model, critical Potts model, eight-vertex model, etc) with an asymptotically exact solution
for the partition function in the thermodynamic limit [2]. In the presence of quenched, that
is time-independent, disorder these types of exact solutions are scarce, which has greatly
hampered our understanding of collective phenomena in disordered systems, for example the
properties of spin glasses.

For disordered systems, such as spin models with random couplings and/or fields, one
usually performs an exact computation on finite lattices and the results are then extrapolated.
An important limitation of this finite lattice method is the available sizes, which can be treated
by different computational methods. For most of the discrete spin models a computation of
the ground state represents a hard optimization problem when there is frustration and it is even
much more complex to compute the partition function.
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In this respect the Ising model, which is equivalent to the Potts model with q = 2 states, is
an exceptional problem since the ground (minimum energy) states can be found in polynomial
time using the solution of max cut problems in planar graphs that involves matching theory
[3–5]. The full partition function of the Ising problem can also be computed for lattices of
bounded genus [6]. Another example of application of optimization theory to lattice statistical
mechanics is the random field Ising model where the ground state can be found in polynomial
time in any dimension [7, 8]. A study of optimal cuts in statistical mechanics can be found
in [9] and a general review about the application of combinatorial optimization methods in
statistical physics can be found in [10].

For the q = 3-state Potts model, when the number of states is three, the computation of the
minimum energy of the system involves (NP-)hard combinatorial problems such as minimizing
the 3-cut in a graph, and no efficient procedure is known for computing the partition function.

If the number of states can be arbitrarily large (and given as a part of the input) the
partition function has an exponential number of terms, and the problem may look hopeless.
In this paper, we show that this is not the case: when the number of states tends to infinity, the
partition function can be determined up to an integer multiplicative factor, and some average
properties of the system can be inferred. This evaluation goes through the minimization of
a submodular function. Note that in [11] a simulated annealing method and an approximate
combinatorial method have been used. The solution we give here is both exact and much more
efficient.

Even though there are ready-made algorithms for general submodular function
minimization [12–15], the resources they require are far beyond the possibilities of the
present application. While the existing first implementations of general submodular function
minimization may require too much time to solve the optimization problem on a lattice
containing a dozen sites (vertices of the input graph corresponding to the variables of the
general problem), we want and will solve problems involving more than two hundred thousand
‘sites’. For this we use methods inspired by [16–19] that fit the particularity of the application
and develop an algorithm which is tailored to graphic submodular functions. Besides the
computational advantages of this approach, we also aim at conceptual simplicity and elegance.
Readers who seek for more mathematical background and connections can consult [20].

In section 1, we describe the problem of physics and show how it reduces to a function
maximization. In section 2, we formulate the mathematical problem, the preliminaries and
the broader context of our algorithm; in sections 3 and 4 we show how to construct an
optimal solution and in section 5 we state the algorithm. Finally, in section 6 we analyse the
practical implementation of the method and display a few computational results. The paper is
self-contained, the algorithms and their correctness will be fully proved.

1. The problem in terms of physics

For a review of the huge amount of work devoted to the Potts model, see [21]. In this section,
we recall the Potts model and show why its partition function (up to an integer multiplicative
factor) is determined, if the number of ‘states’ tends to infinity by the minimum value of a
submodular function.

A lattice is given. At each site of this lattice lives a variable called a spin. We denote the
number of sites by n. Each variable σ1, . . . , σn can take values in {0, 1, . . . , q − 1} for a given
integer q. Pairs of neighbouring sites on the lattice are called bonds, the number of bonds is
denoted by m.
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Each configuration σ = (σ1, . . . , σn) has an energy

E(σ) =
∑
ij

Kij δσiσj
(1)

where σi ∈ {0, . . . , q − 1}, the sum runs over all bonds ij,Kij ∈ R+ is a given non-negative
weight of bond ij and δab is the Kronecker symbol (1 if a = b and 0 otherwise). For
mathematicians: a lattice is a graph, sites are vertices, bonds are edges. The aim is to compute
or approximate the partition function

Z(Kij : ij is a bond) =
∑

σ

exp(E(σ)) =
∑

σ

∏
ij

eKij δσi σj (2)

where the summation runs over all assignments of values σ = (σ1, . . . , σn) and the product
over all bonds ij (the inverse temperature has been included in the couplings Kij ).

We follow [11]. Note that eKδ = 1 + (eK − 1)δ for δ ∈ {0, 1}; introduce νij = eKij − 1
and expand the product of sums:∏

ij

eKij δσi σj =
∏
ij

(
1 + (eKij − 1)δσiσj

) =
∑
F

∏
ij∈F

νij δσiσj

where the summation runs over all subsets of bonds F. Substituting this into (2) we get

Z(Kij ) =
∑

σ

∑
F

∏
ij∈F

νij δσiσj

=
∑
F

∑
σ

∏
ij∈F

νij δσiσj
=

∑
F

qc(F )
∏
ij∈F

νij (3)

where the sum runs over all subsets F of bonds, and where c(F ) is the number of connected
components of F on the set of all sites, counting also the isolated sites among the components.
(If F is empty then

∏
ij∈F νij = 1.) We got the last equality by counting the number of

different σ = (σ1, . . . , σn) for which the product is nonzero; since it is nonzero if and only
if σ(i) = σ(j) for every ij ∈ F , that is, if and only if σ is constant on every connected
component of F, all possible σ can be enumerated by choosing an element of Zq for every
connected component of F independently. Therefore we have exactly qc(F ) such σ .

Note that this sum has 2m terms, and that in (3) q does not need to have an integer value.
(This provides a way of defining Potts’ model for non-integer values [22].) Clearly, Kij � 0
is equivalent to νij � 0, and we can introduce a new set of variables αij with

νij = qαij

and the partition function becomes

Z =
∑
F

qc(F )+
∑

ij∈F αij . (4)

Finally, one introduces the function

f (F ) = c(F ) +
∑
ij∈F

αij (5)

so that

Z =
∑
F

qf (F ). (6)

As pointed out in [11], while q tends to infinity the sum in (6) is asymptotically equal to
Z = Nqf �

where f � = maxF⊆{1,...,n}f (F ) and N is the number of optimal sets. Note that if
the weights wij are arbitrary reals, the degeneracy N is likely to be 1.
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We will analyse the combinatorial optimization problem of finding this maximum. The
problem of finding the degeneracy of the optimal set will not be addressed. In the analysis
of the Potts model magnetic properties are related to geometrical properties of the optimal
sets A, and specifically to their fractal dimension (if any). We assume that, on average and
for large enough lattice, this fractal dimension is the same for all sets, and therefore finding a
single optimal set is sufficient for our purpose. We will present methods which apply to any
set of weights {αij } in an arbitrary lattice (graph) and provide a simply stated and efficient
algorithm.

2. The problem in terms of graphs

For basic graph theoretic notions, terminology and notation we refer to [23]. Given a graph
G = (V ,E) on n vertices with weight function w : E(G) −→ R, we want to solve the
following problem:

maximize

{
fG,w(A) = cG(A) +

∑
e∈A

w(e) : A ⊆ E(G)

}
(Potts)

where cG(A) = c(A) is the number of connected components of the graph G(A) = (V ,A).
Note a slight change of notation compared with equation (5) where an edge is denoted by ij ,
the two corresponding adjacent vertices. We can suppose 0 < w(e) < 1 for all e ∈ E(G),
because if w(e) = 0, then deleting the edge, if w(e) � 1, then contracting it (identifying its
two endpoints) we get an equivalent problem.

When no confusion is possible we will simply use f or fG for fG,w, c for cG. This
function that has to be maximized in order to solve (Potts) has a crucial and well-known
property (see, for instance, [23], exercise 6.2). For any two subsets A and B of edges of G:

f (A) + f (B) � f (A ∪ B) + f (A ∩ B). (Super)

Indeed, it is clear that
∑

e∈A w(e) +
∑

e∈B w(e) = ∑
e∈A∪B w(e) +

∑
e∈A∩B w(e), so we only

have to show that c(A) + c(B) � c(A ∪ B) + c(A ∩ B); that is c satisfies the (Super) property.
For the sake of completeness we include a proof. Proceed by induction on |A\B| + |B\A|. If
this number is 0 then the statement is obvious. If not, then there exists, say, e ∈ A\B. By the
induction hypothesis c(A\e) + c(B) � c(A ∪ B\e) + c(A ∩ B). Deleting an edge increases
the number of connected components by at most 1 and so we are done unless the equality
holds and c(A\e) = c(A) and c(A ∪ B\e) = c(A ∪ B) + 1. But this is impossible since
c(A\e) = c(A) means that the two endpoints of e are in the same connected component of
G(A\e), and then also in the same component of G(A ∪ B\e).

A function g defined on the set of subsets of a set S, with values in R, is said to be
submodular if g(A) + g(B) � g(A ∪ B) + g(A ∩ B) for all subsets A and B of S. The (Super)
property shows that the function −f , whose minimization solves (Potts), is submodular.

By now several polynomial algorithms [12–15] are known to minimize a submodular
function; therefore, we can already claim that there exists a polynomial algorithm solving our
problem (Potts). However, these general algorithms are not efficient enough for our instances.
Fortunately, the specific properties of our problem make possible the use of a considerably
simpler and quicker algorithm. Several more specialized algorithms were already known
(see [20] for an extended presentation) and in particular Cunningham [17] worked out a
specialized algorithm for the ‘optimal attack problem’: ‘the weight of an edge represents the
effort required by an attacker to destroy the edge, and the attacker derives a benefit for each
new component created by destroying edges . . . ’. (Potts) is equivalent to the ‘optimal attack
problem’ but with a ‘complementary’ viewpoint: the weight of an edge represents the benefits
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of cooperation between two vertices (say, researchers); furthermore, there is a unit support
for each component (say, for each research project). So there is a loss of support when two
components unite. Cooperate optimally!

The algorithm described below has its roots in [17] and is similar to [18, 19]. It has the
best asymptotic worst case complexity, the same as [19], and is probably the simplest, both
conceptually and in the use of computational resources of the implementation. Sophisticated
ingredients were necessary for finding this solution, but we do not need to make explicit use
of them. The interested reader may find more details on that subject in [20].

We now return to (Potts). An important observation is the following: if A is a set of edges,
and X is the vertex set of a connected component of G(A), then adding to A edges induced by
X, that is with both endpoints in X, increases the value of f . Thus in an optimal solution A∗

of (Potts) each connected component of A∗ contains all the edges of G it induces. Let us call
Potts partition any partition of the vertices such that each class induces a connected subgraph
of G.

Given a graph G = (V ,E) with edge-weighting w we will say that the value of a partition
P of V is

fG,w(P) = |P| +
∑

{w(xy); xy ∈ E(G) : x and y are in the same class ofP}.
A partition, as well as the set of edges induced by its classes is optimal if its value is maximum
among the values of all partitions.

Every optimal partition is a Potts partition and the edge-sets induced by the classes
optimize (Potts). (Max)

Indeed, if a partition is not Potts, then to the set of edges induced by its classes corresponds
a Potts partition of higher value: the same edges contribute to the value of the partition, but
the cardinality is higher. As a consequence, following [19], during all the procedure it will be
sufficient to consider subsets of vertices instead of subsets of edges.

For any subset F of edges let w(F) = ∑
e∈F w(e) and for any subset X of vertices let

w(X) = ∑
e∈E(X) w(e) where E(X) is the set of edges with both extremities in X.

3. Extension of a solution

In this section, we will see how any set of edges maximizing (Potts) for a graph G minus a
vertex, may be completed so that it maximizes (Potts) for the graph G itself.

Let G be a graph with a weight function w on the edges, let x be a vertex of G and let G′ be
the subgraph of G obtained by deleting x. The edges of G′ keep their weight. Let F ′ ⊆ E(G′)
be an optimal solution of (Potts) for G′.

The following lemma is an easy consequence of the (Super) property.

Lemma 1. There exists an optimal solution of (Potts) for G which contains all edges of F′.

Proof. Let F be any optimal solution of (Potts) for G. By the (Super) property one has in G:

fG(F ∪ F ′) � fG(F ) + fG(F ′) − fG(F ∩ F ′).

Both F ′ and F ∩ F ′ are subsets of edges of G′ and since F ′ is optimal in G′, fG(F ′) =
1 + fG′(F ′) � 1 + fG′(F ∩ F ′) = fG(F ∩ F ′), whence

fG(F ∪ F ′) � fG(F ).

Since F is optimal in G by hypothesis, we get that F ∪ F ′ is optimal too, and the lemma
is proved. �
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As a consequence of lemma 1 we can obtain an optimal solution F ∗ for G by adding
edges to F ′. Let X1, . . . , Xk be the vertices of the connected components of G′(F ′), then
PG(F ′) = {X1, . . . , Xk, {x}}. Each connected component in G(F ∗) will be either an element
of PG(F ′) or the union of at least two elements of PG(F ′). The next lemma shows how the
value of a partition is affected when a subset of connected components is put together.

Lemma 2. Let P and P ′ be two partitions of G such that P = (P ′\W) ∪ {∪Xi; Xi ∈ W} for
some W ⊆ P . Then

fG(P) = fG(P ′) − (|W | − 1 − w(E(W)))

where E(W) denotes the set of edges of G joining vertices belonging to two different sets
in W .

In particular, if P ′ is optimal then |W | − 1 − w(E(W)) � 0 and if P is optimal then
|W | − 1 − w(E(W)) � 0.

Proof. Replacing in P the sets of W by their union decreases the cardinality of P by |W | − 1.
On the other hand, let A and A′ be the sets of edges induced by the classes of P and P ′,
respectively, A = A′ ∪ E(W) and so the weight of the edges increases by w(E(W)). The
equality is then proved and the rest follows immediately. �

We are now ready to prove the following theorem:

Theorem 1. For any W ⊆ PG(F ′) containing {x} and minimizing |W | − 1 − w(E(W)), the
set F ∗ = F ′ ∪ E(W) is optimal for (Potts) in G.

Proof. By lemma 1 we know that there exists an optimal solution F ∗ of (Potts) for G which
contains F ′. Let W ⊆ PG(F ′) such that W = ∪Xi∈WXi is an element of PG(F ∗). If W does
not contain {x} then, since F ′ is optimal in G′, we get by lemma 2 that |W |−1−w(E(W)) � 0
(this value is the same in G and G′). On the other hand F ∗ is optimal in G and therefore
|W | − 1 − w(E(W)) = 0, but then F ∗\E(W) is also optimal for G. Hence there exists an
optimal solution F ∗ of (Potts) for G containing F ′ and such that any element of PG(F ∗) not
containing x is already in PG(F ′).

So any W ⊆ PG(F ′) containing {x} and minimizing |W | − 1 − w(E(W)) will provide
an optimal solution F ′ ∪ E(W). (Note that this minimum is � 0 since for W = {{x}} we
get 0.) �

At this point we see that any way of finding W will provide a constructive algorithm
for getting an optimal solution of (Potts): we start with a solution for a small subgraph (for
example, a one-vertex subgraph) and then add the vertices one by one, computing at each step
an optimal solution. By lemma 1 this can be done by extending the solution of the previous
iteration.

We note that the value |W | − 1 − w(E(W)) does not depend on the subgraphs induced
by the subsets Xi in W , so we may ignore these and work in a possibly smaller graph. To be
precise, the result of shrinking the pairwise disjoint sets X1, . . . , Xk ofPG(F ′) in G is the graph
shr(G) = (shr(V ), shr(E)), where shr(V ) = {x, x1, . . . , xk} and x1, . . . , xk are distinct new
vertices, and the function shr : V −→ {x, x1, . . . , xk} is defined with shr(v) := xi if v ∈ Xi

and shr(x) := x; the image of an edge e with extremities x and y is shr(e) with extremities
shr(x)shr(y). Moreover, if this is a loop (shr(x) = shr(y)), it is deleted; edges keep their
weight, that is wshr(shr(e)) = w(e); sets of vertices or of edges are replaced by the image
sets. There is a one-to-one correspondence between the subsets W of PG(F ′) containing {x}
and subsets W of vertices of shr(G) containing x and for any such W = shr(W) one has
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|W |−1−w(E(W)) = |W |−1−wshr(W) (as defined in the preceding chapter wshr(W) is the
sum of weights of the edges in the subgraph of shr(G) induced by W ). So W will be optimal
if and only if W = shr(W) minimizes |W | − 1 − wshr(W).

4. A network flow model

Given a graph H with weight function w on the edges and W ⊆ V (H), let b(W) =
|W | − 1 − w(W). From the previous chapter it is clear that any way of solving the following
problem will provide an algorithm solving (Potts): given a vertex x in H, find W ∗, a subset of
vertices of H containing x such that b(W ∗) = min(b(W); W ⊂ V (H), x ∈ W). This problem
is solved both in Picard–Queyranne [24] and in Padberg–Wolsey [25], using a network flow
model that will be described below. (The works [24, 25] solve much more complex problems
involving several network flow computations—the subroutine below is the adaptation of an
auxiliary procedure.)

We first give some definitions and well-known facts. Given a directed graph and a
subset X of its vertices, δ(X) will denote the set of arcs leaving X, and is called a cut; if
s ∈ X, t /∈ X it is an (s, t)-cut; δ(X, Y ) denotes the set of arcs oriented from X to Y. A function
c with nonnegative value on the arcs is called a capacity function. If F is a set of arcs then
c(F ) := ∑

e∈F c(e). A network is a directed graph with capacity function. By a well-known
theorem of Ford and Fulkerson [26] a minimum (s, t)-cut in a network may be found by
computing a maximum flow in this network. Very efficient maximum flow algorithms are
known [27].

We now describe in several steps a network (D, c) = N(H,w) that will be associated
with H and w:

1. V (D) := V (H) ∪ {s, t} where s, t are distinct new vertices;
2. define for all u ∈ V (H):

p(u) := 1/2
∑

v∈V (H),uv∈E(H)

w(uv), and then

• if p(u) > 1 add an arc (s, u) of capacity c(s, u) = p(u) − 1,
• if p(u) < 1 then add an arc (u, t) of capacity c(u, t) = 1 − p(u);

3. to each edge uv of E(H) we associate the arcs (u, v) and (v, u) of capacities c(u, v) =
c(v, u) = 1

2w(uv).

Let W ⊆ V (H), δ({s} ∪ W) is an (s, t)-cut of N(H,w) and reciprocally any (s, t)-cut of
N(H,w) corresponds to a subset of vertices of H. There is a close relationship between the
capacities of the (s, t)-cuts of N(H) and the values of b on subsets of vertices of H:

c(δ({s} ∪ W)) = |W | − w(W) + K = b(W) + K + 1 (Cut)

where K := c(δ(s)) = ∑
(s,x)∈A c(s, x).

Indeed, let us see how the capacity of the cuts changes if we start with the set {s} inducing
an (s, t)-cut of capacity c(δ(s)) = K and then ‘add’ to it the vertices of W one by one.

The contribution of adding v to the side of s is 1 − p(v), for either it decreases from
p(v)−1 to 0 (this happens if p(v) > 1, see the first case of ‘2’ in the construction of N(H,w)),
or it increases from 0 to 1 − p(v). Thus the contribution of these arcs is∑

v∈W

1 − p(v) = |W | − w(W) − 1/2
∑

xy∈E(H),x∈W,y /∈W

w(xy).
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On the other hand, the contribution of the arcs between W and V (H)\W is clear: at the
beginning it is zero, and at the end it is

c(W,V (H)\W) = 1/2
∑

xy∈E(H),x∈W,y/∈W

w(xy).

The change comparing to K is provided by the sum of the two contributions, which is
|W | − w(W), and so equation (Cut) has been proved.

From (Cut) we get that any (s, t)-cut C = {s} ∪ W containing the special vertex x and
of minimum capacity will correspond to our goal: a subset W of vertices of H containing x

and minimizing b. Such a cut is easy to obtain: shrink {s, x} or equivalently, add to N(H,w)

an arc of infinite capacity from s to x, and compute in the new network a minimum (s, t)-cut:
this cut will contain x and will be minimum among (s, t)-cuts containing x.

Let us note that this method can be easily generalized to minimize any modular shift of
−w(W). Adding |W | − 1 is just a particular choice of a modular function. That is, one can
minimize (

∑
w∈W m(w)) − w(W), where m : V −→ R. Indeed, for generalizing from |W | to∑

w∈W m(w) one only has to write m(x) instead of 1 in both cases of step 2 in the construction
of N(H,w).

5. The algorithm

In this section, we state the ‘optimal cooperation algorithm’ whose validity is a consequence
of the results of the two preceding chapters.

At each iteration a subset U ⊆ V and a partition P of U will be at hand. In step 0 we give
trivial initial values; in step 1, we choose an arbitrary vertex u to be added to U and through
the following steps we compute a subset W of P ∪ {u} providing a new partition of U ∪ {u}.

5.1. Optimal cooperation algorithm

INPUT: A graph G = (V ,E), and a weight function w: E −→ (0, 1), where (0, 1) := {t ∈
R : 0 < t < 1}.
OUTPUT: A partition P∗ optimizing (Potts): the set of edges A∗ induced by the sets in P∗

maximizes {fG,w(A) := cG(A) +
∑

e∈A w(e) : A ⊆ E}.
0. U := ∅,P := ∅.
Do n times consecutively steps 1–5, and then define P∗ = P:
1. Choose a vertex u ∈ V \U .
2. Define H and wH as the result of shrinking the classes of P in G(U ∪ {u}) with weight
function w restricted to the edges of G(U ∪ {u}).
3. Construct N(H,wH ), add an arc of ‘infinite’ capacity from s to u and using any maximum
flow algorithm compute, in the so-obtained network, a minimum (s, t)-cut defined by the set
of vertices C = {s, u, x1, . . . , xk} where each xi is a vertex of H corresponding to a set Xi ∈ P .
4. Define R := {u} ∪ X1 ∪ . . . ∪ Xk .
5. Redefine U and P : U := U ∪ {u},P := (P\{X1, . . . , Xk}) ∪ {R}.
END.

Remarks.

• ‘Infinite’ means big enough to avoid a minimum cut containing this arc: for example the
sum of the capacities of all arcs.

• Note that C can be equal to {s, u}.
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• The graphs H can also be constructed iteratively with only one shrinking in each iteration,
by adding u and then shrinking the set C\{s}.

• The choice for u is completely free; this freedom could be used for making the
computations simple.

Theorem 2. The output P∗ is an optimal partition for (G,w).

Proof. At step 0, P := ∅ is an optimal solution for the subgraph of G induced by U := ∅.
Assume now that P is an optimal solution for the subgraph of G induced by U, and show
that after applying steps 1 to 5 the new partition is optimal for U ∪ {u}. From the preceding
chapter we know that W := C\{t} = {u, x1, . . . , xk} is a subset of vertices of H containing
u minimizing |W | − wH (W) − 1. But H and wH are obtained by shrinking the classes
of P in (G(U ∪ {u}),w), hence W = {u,X1, . . . , Xk} is a subset of {u} ∪ P minimizing
|W | − 1 − w(E(W)) and by theorem 1 the partition (P\{X1, . . . , Xk}) ∪ {R} is then optimal.

�

Note that the ‘optimal cooperation algorithm’ consists merely of n − 1 network flow
computations and n − 1 shrinking.

6. Implementation and evaluation

In this section, we discuss some aspects of the practical implementation of the optimal
cooperation algorithm. Here we consider a two-dimensional square lattice where the weights,
w, follow a bimodal distribution,

P(w) = pδ(w − w1) + (1 − p)δ(w − w2) (7)

where δ(x) = 1 if x = 0 and δ(x) = 0 otherwise. We restrict ourselves to the symmetric
case p = 1/2. As explained in [11], in the infinite lattice limit there is a second-order phase
transition in the model at w1 + w2 = 1. In the strongly disordered phase, w1 + w2 
 1, the
optimal set of edge is A = ∅, while in the strongly ordered phase, w1 + w2 � 1 it is A = E.
In between, the optimal set A has a non-trivial structure and at the transition point it is a fractal
reflecting the critical properties of the system [11].

As explained in the previous section, for a graph with n vertices the algorithm consists
of n − 1 steps. At each step, a new site is incorporated into the current graph for which
the optimization has already been performed. There is a freedom of the order of the added
sites, which can be used to speed up the computation, as well as to obtain the optimal sets
of intermediary lattices. For example, from the computation of the optimal set for an L × L
square lattice with free boundary conditions one can also obtain the optimal sets of L − 1
minors of size ranging from 1 to L − 1 with free boundary conditions, which is useful for
finite size analysis.

The ‘engine’ of the algorithm is the max flow solver, which is called at each step. We have
used the Goldberg and Tarjan algorithm [28]. Another important point concerns the building
of the network (point 3 in the optimal cooperation algorithm). It is possible to build it explicitly
as another data structure than the lattice. Alternatively, one can increase up to a sufficiently
large value all the capacities of the edges of a spanning tree of each connected component as
mentioned in the previous paragraph. In general, the cpu time required to explicitly shrink the
connected components is larger than the cpu time needed to simply increase some capacities.
On the other hand, keeping all vertices will increase the size of the network in which the max
flow has to be found. If all the capacities are large (w1 + w2 > 1, that is we are in the ordered
phase) the network will have only two sites at each step, and therefore the effort to build the



6982 J-Ch Anglès d’Auriac et al

Table 1. Typical cpu time (see the text).

L Time

16 ∼ one second
32 ∼ half a minute
64 ∼ five minutes

128 ∼ one hour and a half
256 ∼ one day
512 ∼ two weeks

network will be largely compensated by the speed at which the maximum flow is found. In
the opposite extreme, when the optimal set tends to be empty, it is questionable which of the
two strategies is the best. We have found that explicitly shrinking the connected components
is always the most efficient. As a matter of fact, the computation time is about ten times larger
at the critical point w1 + w2 = 1 than at the ordered phase (w1 + w2 > 1) and about three
times larger than at the disordered phase (w1 + w2 < 1).

As an illustration we display in the table below some typical cpu times needed to find an
optimal set on a periodic square lattice of various sizes, L × L, at the critical point w1 +w2 = 1.
From these results one can extract the empirical rule that in our algorithm the computation
time grows approximately as the fourth power of the linear size L, thus as the second power
of the number of sites. The cpu times in table 1 refer to a PC with a Pentium III, 800 MHz
processor.

In conclusion, in this paper we have presented and implemented a combinatorial
optimization algorithm which solves the optimal cooperation problem in polynomial time.
The procedure, which can be used to obtain the partition function of the q-state random bond
Potts model in the large q-limit is, to our knowledge, the first application of submodular
function optimization in (statistical) physics. Detailed results about the q-state random bond
Potts model, such as properties of phase transitions in two- and three-dimensional lattices,
will be presented in a separate publication [29].
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